Abstract

3D anisotropic functional properties (such as magnetic, electrical, thermal, and optical properties, etc.) in a single material are not only beneficial to the multipurpose of a material, but also helpful to enrich the regulatory dimensionality of functional materials. Herein, a colossal 3D electrical anisotropy of layered MAB-phase MoAlB single crystal is introduced and dissected. Using high-temperature metal-solution method, high-quality MoAlB single crystals are obtained and a surprisingly strong out-of-plane (σa /σb = 1.43 × 105 , at 2 K) and in-plane (σa /σc = 12.12, at 2 K) electrical anisotropies are first observed. After a series of experimental and theoretical investigations, it is demonstrated that the 3D anisotropic crystal structure and chemical bond of MoAlB result in its 3D anisotropic phonon vibration and electronic structure, influence the corresponding electron-electron as well as electron-phonon interactions, and finally give rise to its colossal 3D anisotropy of electrical conductivity. This work experimentally and theoretically proves MoAlB single crystal possessing the 3D anisotropies of crystal structure, chemical bond, phonon vibration, electronic structure, and electrical transport, but also provides a promising platform for the future design of functionalized electronic devices as well as synthesis of new and large-sized in-plane anisotropic 2D material (MoBene).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.