Abstract
Person re-identification (re-id) attempts to match pedestrian images with the same identity across non-overlapping cameras. Existing methods usually study person re-id by learning discriminative features based on the clothing attributes (e.g., color, texture). However, the clothing appearance is not sufficient to distinguish different persons especially when they are in similar clothes, which is known as the fine-grained (FG) person re-id problem. By contrast, this paper proposes to exploit the color-unrelated feature along with the head-shoulder feature for FG person re-id. Specifically, a color-unrelated head-shoulder network (CUHS) is developed, which is featured in three aspects: (1) It consists of a lightweight head-shoulder segmentation layer for localizing the head-shoulder region and learning the corresponding feature. (2) It exploits instance normalization (IN) for learning color-unrelated features. (3) As IN inevitably reduces inter-class differences, we propose to explore richer visual cues for IN by an attention exploration mechanism to ensure high discrimination. We evaluate our model on the FG-reID, Market1501, and DukeMTMC-reID datasets, and the results show that CUHS surpasses previous methods on both the FG and conventional person re-id problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.