Abstract

Semiconductor superlattice micro-/nanowires could greatly increase the versatility and power of modulating electronic or excitonic, and photonic transport, and related optical properties. In this paper we report the synthesis of alloyed semiconductor superlattice microwires (SMs) of CdS1-xSex/Sn: CdS1-xSex based on the mciro-environmental controlled co-evaporation technique. The alloyed SMs can produce color-tunable multimode emission with wavelength from 513 nm to 596 nm by controlling the composition x from 0 to 0.4. In addition, the alloyed segments in the superlattices form many optical microcavities in queue which can lead to the coupled optical cavities which confine both excitons and photons, producing multiple cavity emission modes. This structure may be used in color-tunable nonlinear optical devices, and study light-matter interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call