Abstract

In an effort to clarify the evolutionary processes influencing color-pattern variation in Lake Erie island water snake (Nerodia sipedon) populations, rates of gene flow among island and mainland populations were estimated from patterns of allozymic variation detected using electrophoresis. Rates of gene flow were high with Nm, the number of migrants per generation, averaging 25.5 among island sites, 9.2 between the Ontario mainland and the islands, and 3.6 between the Ohio mainland and the islands. Based on estimates of current population size from mark-recapture work and of past population size extrapolated from the extent of shoreline habitat, values of m between island and mainland populations ranged from 0.0008-0.01. Synthesis of estimates of the rate of gene flow with information on inheritance of color pattern, the strength of natural selection, and population history supports the hypothesis that color-pattern variation in island populations results from a balance between gene flow and natural selection. However, depending on the mode of inheritance of color pattern, stochastic processes such as drift may have been important in the initial stages of differentiation between island and mainland populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call