Abstract
Ternary tetrahedral II-III2-VI4 semiconductors, where II is Zn or Cd, III In or Ga, and VI S, Se, or Te, are of interest in UV radiation detectors in medicine and space physics as well as CO2 photoreduction under visible light. We synthesize colloidal II-III2-VI4 semiconductor nanocrystals from readily available precursors and ascertain their ternary nature by structural and spectroscopic methods, including 77Se solid-state NMR spectroscopy. The pyramidally shaped nanocrystals range between 2 and 12 nm and exhibit optical gaps of 2-3.9 eV. In the presence of excess anions on the particle surface, treatment with Lewis acidic, Z-type ligands results in better passivation and enhanced photoluminescence. Electronic structure calculations reveal the most stable, lowest energy polymorphs and coloring patterns. This work will pave the way toward more environmentally friendly, ternary semiconductors for optoelectronics and electrocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.