Abstract

SummaryThe Tower of Hanoi graphs make up a beautifully intricate and highly symmetric family of graphs that show moves in the Tower of Hanoi puzzle played on three or more pegs. Although the size and order of these graphs grow exponentially large as a function of the number of pegs, p, and disks, d (there are pd vertices and even more edges), their chromatic number remains remarkably simple. The interplay between the puzzles and the graphs provides fertile ground for counts, alternative counts, and still more alternative counts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.