Abstract
The characterization of equilibria and their transition is fundamental in dynamic systems. Experimentally, the characterization of transitions is complex due to time scales separation, the effect of thermal fluctuations, and inherent experimental imperfections. Liquid crystal devices are derived from the manipulation of the molecular reorientation and transition between them by employing external electrical and magnetic fields. Here, we investigate and determine the Fréedericksz transition using hue measurements of the transmitted light in thin nematic liquid crystal cells. Based on birefringent retardation experienced by transmitted light due to molecular reorientation, the color adjustment of the nematic liquid crystal cells under white light illumination is characterized. By monitoring the hue of the transmitted light, the bifurcation diagram is determined. As a function of the voltage frequency, the critical transition voltage is characterized. The critical voltage increases with the applied frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.