Abstract
Eighteen commercial beers have been analyzed in both liquid and gas phases using colorimetric sensor arrays made from selected chemically responsive dyes printed on a hydrophobic membrane. Digital imaging of the dye array before and after exposure to the complex analytes in either the liquid phase or the head-gas provides a color change profile as a unique fingerprint for the specific analyte. The digital data libraries generated were analyzed using statistical and chemometric methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). In either liquid- or gas-phase experiments, facile identification of specific beers was achieved using comparison of the color change profiles; using HCA statistical analysis the error rate of identification was <3%. Differentiation between even very similar beers proved to be straightforward. In addition, differentiation of pristine beer from the effects of watering or decarbonation proved to be possible. These results suggest that colorimetric sensor arrays may prove to be useful for quality assurance/quality control applications of beers and perhaps other beverages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.