Abstract

AbstractIn the current work, we investigate the mechanism of protonation of a Meisenheimer complex derived from picric acid and N,N′‐dicyclohexylcarbodiimide to provide the correct structure of the protonated Meisenheimer complex with the proper mechanism. A substituted picramide derivative has also been synthesised and characterised using various spectroscopic techniques to rule out the previously suggested protonated Meisenheimer complexes and support our proposed protonated structure. Various other investigations, including the interactions of the Meisenheimer complex with bulky electrophile Lawesson's reagent and bulky Lewis acid Eu(fod)3, were also carried out to support the mechanism of protonation. Various bulky bases as well as bases of different strengths were treated with the protonated Meisenheimer complex to support our proposed structure. Based on the protonation of the Meisenheimer complex, a general colorimetric volatile acid sensor has been designed, where a distinct colour change from orange to colourless was found to take place after protonation. The sensor can detect volatile acids both in the solid and in the solution state. The sensor was also applied to detect hydrogen chloride vapour in an automated manner using a smartphone, where information regarding the leakage position can be obtained through wireless communication. The detection limit of hydrogen chloride vapour was found to be 43.5 ppm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.