Abstract
Monitoring of the organophosphorus pesticides dichlorvos at very low levels has been achieved with liposome-based nanobiosensors. The enzyme acetylcholinesterase was effectively stabilized within the internal nanoenvironment of the liposomes. Within the liposomes, the pH sensitive fluorescent indicator pyranine was also immobilized for the optical transduction of the enzymatic activity. Increasing amounts of pesticides lead to the decrease of the enzymatic activity for the hydrolysis of the acetylcholine and thus to a decrease in the fluorescent signal of the pH indicator. The decrease of the liposome biosensors signal is relative to the concentration of dichlorvos down to 10-12 M levels. Also a colorimetric screening device for pesticide analysis has been evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.