Abstract

Monitoring and recording subzero temperatures and humidity are essential activities for pharmaceutical, food-beverage, and cold storage industries, as product quality can be hampered during storage and transportation due to temperature disruptions. Traditional electronic subzero time-temperature indicators (TTIs) can be energy-inefficient, fragile, non-recyclable, and susceptible to data breaches and cyber-attacks. Hydrophilic colorimetric polymer nanofilms have been developed as colorimetric temperature and relative humidity (RH) sensors, however, the reversible color-changing behavior of these films significantly limited their application as TTIs, as cannot record temperature changes in the past. Herein, the first colorimetric polymer nanofilm-based TTI for recording an irreversible change of temperatures is reported. This device has shown quick color response in temperature ranges from 23 °C to -30 °C in fewer than 50 s. Remarkably, when the device experiences temperature disruption above a certain threshold time (tth), it shows irreversible color-changing behavior in response to the temperature change from subzero (-30 °C and -15 °C) to room temperature or above. It was demonstrated that tth, from minutes to days, of the TTI device can be precisely tuned by adjusting moisture absorber type and weight, interior RH, and storage temperature. Several field tests have demonstrated good versatility and applicability of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.