Abstract

In this study, we have developed a method for rapid, highly efficient and selective detection of melamine. The negatively charged citrate ions form an electrostatic layer on gold nanoparticles (AuNPs) and keep the NPs dispersed and stable. When citrate-capped AuNPs were further modified with Triton X-100, it stabilized the AuNPs against the conditions of high ionic strength and a broad pH range. However, the addition of melamine caused the destabilization and aggregation of NPs. This may be attributed to the interaction between melamine and the AuNPs through the ligand exchange with citrate ions on the surface of AuNPs leading Triton X-100 to be removed. As a result, the AuNPs were unstable, resulting in the aggregation. The aggregation induced a wine red-to-blue color change, and a new absorption peak around 630nm appeared. Triton X-100-AuNPs could selectively detect melamine at the concentration as low as 5.1nM. This probe was successfully applied to detect melamine in milk. Furthermore, paper-based quantitative detection system using this colorimetric probe was also demonstrated by integrating with a smartphone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.