Abstract

We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn2+ ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn2+ ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn2+ ions. The extinction ratio of absorbance at 700–550nm (A700/A550) was linear against the concentration of [Mn2+] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn2+ ions reveal the concentration of Mn2+ ions in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call