Abstract

A S-nitrosothiol (RSNO) is used for highly selective and sensitive copper ion sensing for the first time. Cu(II) in the sample is reduced to Cu(I) by a low amount of thiols generated from hydrolysis of RSNO molecules or added thiols such as l-glutathione or l-cysteine. Cu(I) is able to trigger cleavage of the SNO bond, which converts colored RSNOs to colorless products. The dark green S-nitroso-N-acetylpenicillamine is used as an exemplary RSNO in this report. In the spectrophotometric test, the detection limit toward Cu(II) is 0.23 μM without added thiol reductants, and 0.08 and 0.06 μM in the presence of l-glutathione and l-cysteine, respectively. Furthermore, we prepared fully inkjet printed paper-based sensors by deposition of all reaction reagents and buffers on the same piece of cellulose paper. A smartphone equipped with a color analysis app enables quantification of the color change of the paper-based Cu(II) sensors. In this method, a detection limit of 1.2 μM and a linear range of 0–10 μM were obtained. Finally, we successfully applied this instrumentation-free and reagent-free senor for Cu(II) analysis in real drinking water and river water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call