Abstract

Chiral recognition is among the important and special modes of molecular recognition. It is highly desirable to develop a simple, rapid, sensitive, and high-throughput routine assay for chiral recognition. In this study, we demonstrate that nucleotide-capped Ag nanoparticles (AgNPs) can be used as an ultrahigh efficiency enantioseparation and detection platform for D- and L-cysteine. The aggregation of AgNPs is selectively induced by an enantiomer of cysteine, which allowed the rapid colorimetric enantiodiscrimination of cysteine without any prior derivatization and specific instruments and left an excess of the other enantiomer in the solution, thus resulting in enantioseparation. This is the first application of a nucleotide-capped AgNP-based biosensing platform for chiral recognition and opens new opportunities for design of more novel enantiosensing strategies and enantiospecific adsorbents and expansion of its application in different fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.