Abstract

This paper proposes a method of colorimetric characterization based on the color correlation between the distributions of colorant amounts in a CMYKGO printer. In colorimetric characterization beyond three colorants, many color patches with different combinations of colorant amounts can be used to represent the same tri-stimulus value. Therefore, choosing the proper color patches corresponding each tri-stimulus value is important for a CMYKGO printer characterization process. As such, the proposed method estimates the CIELAB value for many color patches, then selects certain color patches while considering high fidelity and the extension of the gamut. The selection method is divided into two steps. First, color patches are selected based on their global correlation, i.e. their relation to seed patches on the gray axis, and become the reference for correlation. However, even though a selected color patch may have a similar overall distribution to the seed patch, if the correlation factor is smaller than the correlation factors for neighboring patches, the color patch needs to be reselected. Therefore, in the second step, the color patch is reselected based on the local correlation with color patches that have a lower correlation factor with the seed patch. Thus, to reselect the color patch, the seed patch is changed to the average distribution of eight neighboring selected color patches, and the new color patch selected considering the new correlation factor. Consequently, the selected color patches have a similar distribution to their neighboring color patches. The selected color patches are then measured for accuracy, and the relation between the digital value and the tristimulus value for the color patches stored in a lookup table. As a result of this characterization, the gamut is extended in the dark regions and the color difference reduced compared to conventional characterization methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.