Abstract
We report a smartphone-based colorimetric analysis of saliva–alcohol concentrations, utilizing optimal color space and machine-learning algorithms. Commercial saliva–alcohol kits are used as a model experiment, utilizing a custom-built optical attachment for the smartphone to obtain consistent imaging of the alcohol strips. The color of the strips varies with the alcohol concentration, and the smartphone camera captures the color produced on the test strip. To make a suitable library for each alcohol concentration, statistical methods were tested to maximize between-scatter and minimize within-scatter for each concentration. Results of three different classification methods (LDA, SVM, and ANN) and four-color spaces (RGB, HSV, YUV, and Lab) were evaluated with various machine-learning data sets and five different smartphone models. Cross-validation results were used to assess the statistical performance, such as positive (PPV) and negative (NPV) predictive values. An Android app developed and provided average classification rates of 100% and 80% for the standard and enhanced concentrations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.