Abstract
The authors describe a colorimetric method for determination of kanamycin by using gold nanoparticles (AuNPs) as the element of signal-conversion and by applying hybridization chain reaction-assisted signal amplification. The assay is carried out by monitoring the absorbance change and color change adding salt to the reaction solution containing kanamycin (analyte), hairpin DNA probe, and AuNPs. Three hairpin DNA probes with sticky ends were absorbed on the AuNPs via their sticky ends. Cating with DNA prevents them from salt-induced aggregation (which leads to a color change from red to blue) in the complete absence of kanamycin. In contrast, in the presence of kanamycin, the aptamer hairpin DNA probe binds kanamycin, and the newly exposed section of DNA triggers a cascade of hybridization chain reactions with formation of numerous dsDNAs. On addition of salt, the AuNPs form blue aggregates due to the repulsion between dsDNA and AuNPs. Under optimal conditions, the ration of absorbance at 520 and 630nm drops with the kanamycin concentration in the range from 1 to 40μM, and the limit of detection is 0.68μM. The assay can selectively distinguish kanamycin from other antibiotics. The method was applied to kanamycin detection in (spiked) milk samples and gave excellent recoveries. Graphical abstract Schematic presentation of colorimetric method for kanamycin detection using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.