Abstract

We hypothesized that pupil constrictions to the glare illusion, where converging luminance gradients subjectively enhance the perception of brightness, would be stronger for ‘blue’ than for other colors. Such an expectation was based on reflections about the ecology of vision, where the experience of dazzling light is common when one happens to look directly at sunlight through some occluders. Thus, we hypothesized that pupil constrictions to ‘blue’ reflect an ecologically-based expectation of the visual system from the experience of sky's light and color, which also leads to interpret the blue gradients of illusory glare to act as effective cues to impending probable intense light. We therefore manipulated the gradients color of glare illusions and measured changes in subjective brightness of identical shape stimuli. We confirmed that the blue resulted in what was subjectively evaluated as the brightest condition, despite all colored stimuli were equiluminant. This enhanced brightness effect was observed both in a psychophysical adjustment task and in changes in pupil size, where the maximum pupil constriction peak was observed with the ‘blue’ converging gradients over and above to the pupil response to blue in other conditions (i.e., diverging gradients and homogeneous patches). Moreover, glare-related pupil constrictions for each participant were correlated to each individual's subjective brightness adjustments. Homogenous blue hues also constricted the pupil more than other hues, which represents a pupillometric analog of the Helmholtz-Kohlrausch effect on brightness perception. Together, these findings show that pupillometry constitutes an easy tool to assess individual differences in color brightness perception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call