Abstract
Regular edge-colored graphs encode colored triangulations of pseudo-manifolds. Here we study families of edge-colored graphs built from a finite but arbitrary set of building blocks, which extend the notion of $p$-angulations to arbitrary dimensions. We prove the existence of a bijection between any such family and some colored combinatorial maps which we call stuffed Walsh maps. Those maps generalize Walsh's representation of hypermaps as bipartite maps, by replacing the vertices which correspond to hyperedges with non-properly-edge-colored maps. This shows the equivalence of tensor models with multi-trace, multi-matrix models by extending the intermediate field method perturbatively to any model. We further use the bijection to study the graphs which maximize the number of faces at fixed number of vertices and provide examples where the corresponding stuffed Walsh maps can be completely characterized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.