Abstract

Over the centuries, various types of paper have been produced, each characterized by a different ratio of natural macromolecules, mainly lignin and cellulose. Handmade paper has a higher content of cellulose with respect to the early machine-made paper, where lignin is the other important component. Microorganisms are able to colonize and deteriorate both types. They can release on their surfaces pigments and colorants which produced anesthetic stains. To better understand the microbiota colonizing these stains, 17 samples were analyzed, from both handmade and machine-made paper surfaces, as well as library and archive environments. Combination of microbiological and high-throughput sequencing (HTS) approaches were applied. The culture-dependent methodology comprised: isolation, DNA identification, hydrolytic and paper staining assays. The HTS was performed by MinION platform and for the mycobiome a more suitable bioinformatics analysis pipeline, MetONTIIME based on QIIME2 framework, was applied. The paper model staining assay permitted the direct recognition of colorizing isolates which in combination with sequencing data evidenced a complex microbial community able to stain the two types of paper. Staining abilities were confirmed by frequently isolated and detected fungi as well as newly discovered ones Roussoella euonymi and Achaetomium. We have also evidenced the staining ability of several bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call