Abstract
This paper proposes a novel Colored Petri Net (CPN) based dynamic scheduling scheme, which aims at scheduling real-time tasks on multiprocessor system-on-chip (MPSoC) platforms. Our CPN based scheme addresses two key issues on task scheduling problems, dependence detecting and task dispatching. We model inter-task dependences using CPN, including true-dependences, output-dependences, anti-dependences and structural dependences. The dependences can be detected automatically during model execution. Additionally, the proposed model takes the checking of real-time constraints into consideration. We evaluated the scheduling scheme on the state-of-art FPGA based multiprocessor hardware system and modeled the system behavior using CPN tools. Simulations and state space analyses are conducted on the model. Experimental results demonstrate that our scheme can achieve 98.9% of the ideal speedup on a real FPGA based hardware prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.