Abstract

Over the past decade, the zebrafish has been increasingly employed in biomedical neuroscience research due to its numerous evolutionarily conserved features with mammals. Its simple brain and the several molecular tools available for this species make the zebrafish an appealing model to study mechanisms of complex brain functions, including learning and memory. Most learning paradigms developed for the zebrafish have employed visual stimuli as the associative cue. Spontaneous color preference is a potential confound in such studies. It has been analyzed in zebrafish using colored objects, but with conflicting results. It has rarely been explored with colored light, despite the increasing use of computer-generated visual stimuli. Here, we employ a light emitting diode (RGB-system) light-based color preference task in the plus-maze. In two independent experiments, zebrafish were tested in a four-choice or dual-choice condition by using four different-colored lights (red, green, blue and yellow). Our results suggest a light preference hierarchy that depends on context, since yellow was preferred over green in the four-choice condition whereas blue was preferred over all other colors in the two-choice condition. These results are useful for future color-light-based learning experiments in zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.