Abstract

(1) Background: Tumor-associated macrophages (TAMs) are important immunocytes associated with liver metastasis of colorectal cancer (CRLM). However, the molecular processes underpinning the interaction between the TME and the tumour-derived exosomal miRNAs in CRLM are not being fully understood; (2) Methods: Transmission electron microscopy was utilized to confirm the existence of exosomes after differential ultracentrifugation. To determine the roles of exosomal miR-203a-3p, an in vivo and in vitro investigation was conducted. The mechanism by which exosomal miR-203a-3p governs the interaction between CRC cells and M2 macrophages was investigated using a dual-luciferase reporter assay, western blot, and other techniques; (3) Results: Overexpression of miR-203a-3p was associated with poor prognosis and liver metastasis in CRC patients. Exosomal miR-203a-3p was upregulated in the plasma of CRC patients and highly metastatic CRC cells HCT116, and it could be transported to macrophages via exosomes. Exosomal miR-203a-3p induced M2 polarization of macrophages by controlling PTEN and activating the PI3K/Akt signaling pathway. M2-polarized macrophages secreted the CXCL12, which increased cancer metastasis and resulted in pre-metastatic niches in CRLM by CXCL12/CXCR4/NF-κB signaling pathway. Co-culture of macrophages with miR-203a-3p-transfected or exosome-treated cells increased the ability of HCT116 cells to metastasize both in vitro and in vivo; (4) Conclusions: Exosomes produced by highly metastatic CRC cells and rich in miR-203a-3p may target PTEN and alter the TME, promoting liver metastasis in CRC patients. These findings offer fresh understanding of the liver metastatic process in CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call