Abstract

In this paper, active nanocomposite waveguides based on the dispersion of CdS, CdTe, and CdSe colloidal quantum dots (QDs) in PMMA are proposed. Their propagation properties are studied as a function of the concentration of nanoparticles in the polymer using the variable length stripe method. When the three nanostructures are dispersed in the same film, the structure is able to waveguide the three basic colors: red (CdSe), green (CdTe), and blue (CdS), it being possible to engineer any waveguided color by an appropriate choice of the filling factor of each QD in the PMMA matrix. For this purpose, it is important to take into account reabsorption effects and the Förster energy transfer between the different QDs families. As a final application, white waveguided light at the output of the structure is demonstrated. This energy transfer can be also the origin of the surprising observation that initial gain (losses) are much higher (smaller) in these active multinanopaticle waveguides than in single-loaded ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call