Abstract
The color-tunable up-conversion (UC) emission was observed in ZrO2:Yb3+, Er3+ thin films synthesized on fused silica substrates using a chemical solution deposition method. The crystal structure, surface morphology image and optical transmittance of ZrO2:Yb3+, Er3+ thin films were detected in the matter of Yb3+/Er3+ doping content. Under excitation by 980 nm infrared light, intense UC emission can be obtained from ZrO2:Yb3+, Er3+ thin films. Photoluminescence study shows that there are two emission bands centered at 548 nm and 660 nm in the UC luminescence spectra, which can be owing to (2H11/2,4S3/2)→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ ions, respectively. In addition, the color coordinate of UC emission between green-red can be tuned by properly adjusting the dopant concentration, because the composition of Yb3+/Er3+ affect the red/green ratio via the process of cross relaxation and energy back transfer. Our study suggests that ZrO2:Yb3+, Er3+ thin films can be considered as promising materials for new photoluminescence devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.