Abstract

The excited-state intramolecular proton transfer chromophores were regarded as good materials for laser action generation due to their inherent four-level photocycle. The excitation-dependent properties of these compounds enable light amplification from two distinct forms: both enol and keto, making it possible to obtain dual fluorescence emission. Herein, we report that a third option is possible for the first time stimulated emission was realized with a deprotonated ESIPT molecule based on a novel rigidified 2-(2'-hydroxyphenyl)benzothiazole derivative, triggering the possibility to fabricate real-time tunable active material. Through the rational engineering of the ratio of each emissive species, a red-green-blue device was fabricated with the possibility of white light generation. The degenerated two-wave mixing setup was applied to construct a continuously tunable distributed feedback laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call