Abstract

Image dehazing is a crucial image processing step for outdoor vision systems. However, images recovered through conventional image dehazing methods that use either haze-relevant priors or heuristic cues to estimate transmission maps may not lead to sufficiently accurate haze removal from single images. The most commonly observed effects are darkened and brightened artifacts on some areas of the recovered images, which cause considerable loss of fidelity, brightness, and sharpness. This paper develops a variational image dehazing method on the basis of a color-transfer image dehazing model that is superior to conventional image dehazing methods. By creating a color-transfer image dehazing model to remove haze obscuration and acquire information regarding the coefficients of the model by using the devised convolutional neural network-based deep framework as a supervised learning strategy, an image fidelity, brightness, and sharpness can be effectively restored. The experimental results verify through quantitative and qualitative evaluations of either synthesized or real haze images, and the proposed method outperforms existing single image dehazing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.