Abstract

Contrast sensitivity functions (CSFs) describe the smallest visible contrast across a range of stimulus and viewing parameters. CSFs are useful for imaging and video applications, as contrast thresholds describe the maximum of color reproduction error that is invisible to the human observer. However, existing CSFs are limited. First, they are typically only defined for achromatic contrast. Second, even when they are defined for chromatic contrast, the thresholds are described along the cardinal dimensions of linear opponent color spaces, and therefore are difficult to relate to the dimensions of more commonly used color spaces, such as sRGB or CIE L*a*b*. Here, we adapt a recently proposed CSF to what we call color threshold functions (CTFs), which describe thresholds for color differences in more commonly used color spaces. We include color spaces with standard dynamic range gamut (sRGB, YCbCr, CIE L*a*b*, CIE L*u*v*) and high dynamic range gamut (PQ-RGB, PQ-YCbCr and ICTCP). Using CTFs, we analyze these color spaces in terms of coding efficiency and contrast threshold uniformity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call