Abstract

Texture and color are essential attributes to be analyzed for any robust computer vision system. This paper presents a novel method to analyze color-texture images, based on representing states of a simplified gravitational collapse from each image color channel and extracting information from each state using the Bouligand–Minkowski fractal dimension and the lacunarity method. In this approach, we obtained the best classification results when the images of each channel evolved in times t={1,5,10,15}, each time representing a state, using radius r={3,4,5,6} for the Bouligand–Minkowski method and box size l={2,3,4,5,6} for the lacunarity method. The best classification results were 99.37% and 96.57% of success rate (percentage of samples correctly classified) for VisTex and USPTex databases, respectively. These results prove that the proposed approach opens a promising source of research in color texture analysis still to be explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.