Abstract
Manipulation of magnetic dipole emission with resonant photonic nanostructures is of great interest for both fundamental research and applications. However, obtaining selective control over the emission properties of magnetic dipole transitions is challenging, as they usually occur within a manifold of spectrally close emission lines associated with different spin states of the involved electronic levels. Here we demonstrate spectrally selective directional tailoring of magnetic dipole emission using designed photonic nanostructures featuring a high quality factor. Specifically, we employ a hybrid nanoscale optical system consisting of a Eu3+ compound coupled to a designed broken-symmetry TiO2 metasurface to demonstrate directional color routing of the compound's emission through its distinct electric and magnetic-dominated electronic transition channels. Using low numerical aperture collection optics, we achieve a fluorescence signal enhancement of up to 33.13 for the magnetic-dominated dipole transition at 590 nm when it spectrally overlaps with a spectrally narrow resonance of the metasurface. This makes the, usually weak, magnetic dipole transition the most intense spectral line in our recorded fluorescence spectra. By studying the directional emission properties for the coupled system using Fourier imaging and time-resolved fluorescence measurements, we demonstrate that the high-quality-factor modes in the metasurface enable free-space light routing, where forward-directed emission is established for the magnetic-dominated dipole transition, whereas the light emitted via the electric dipole transition is mainly directed sideways. Our results underpin the importance of magnetic light-matter interactions as an additional degree of freedom in photonic and optoelectronic systems. Moreover, they facilitate the development of spectrometer-free and highly integrated nanophotonic imaging, sensing, and probing devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.