Abstract
In this paper, we propose a Hierarchical Frequency Sensitive Competitive Learning (HFSCL) method to achieve Color Quantization (CQ). In HFSCL, the appropriate number of quantized colors and the palette can be obtained by an adaptive procedure following a binary tree structure with nodes and layers. Starting from the root node that contains all colors in an image until all nodes are examined by split conditions, a binary tree will be generated. In each node of the tree, a Frequency Sensitive Competitive Learning (FSCL) network is used to achieve two-way division. To avoid over-split, merging condition is defined to merge the clusters that are close enough to each other at each layer. Experimental results show that the proposed HFSCL has desired ability for CQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.