Abstract

Abstract Detection of computer-generated (CG) images can reveal the authenticity and originality of digital images. However, recent cutting-edge image generation methods make it very difficult to distinguish CG images from natural photographs. In this paper, a novel method based on color patterns and enhanced texture learning is proposed to tackle this problem. We designed and implemented the backbone network with a separation-fusion learning strategy by constructing a multi-branch neural network. The luminance and chrominance patterns in dual-color spaces (RGB and YCbCr) are leveraged to achieve a robust representation of image differences. A channel-spatial attention module and a global texture enhancement module are also integrated into a backbone network to enhance the learning of inherent traces. Experiments on several commonly used benchmark datasets and a newly constructed dataset with more realistic and diverse images demonstrate that the proposed algorithm outperforms state-of-the-art competitors by a large margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.