Abstract

It is generally accepted that butterfly wing color-patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color-patterns may be produced physiologically in response to environmental stress, and they may lack significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed genetically in a population. Here, three such cases in butterflies are concisely reviewed, and their possible mechanisms of genetic assimilation are discussed. First, a certain modified color-pattern of Vanessa indica induced by temperature treatments resembles the natural color-patterns of its closely related species of the genus Vanessa (sensu stricto). Second, a different type of color-pattern modification can be induced in Vanessa cardui as a result of a general stress response. This modified pattern is very similar to the natural color-pattern of its sister species Vanessa kershawi. Third, a field observation was reported, together with experimental support, to show that the color-pattern diversity of a regional population of Zizeeria maha increased at the northern range margin of this species in response to temperature stress. In these three cases, modified color-patterns are unlikely to have significant functions, and these cases suggest that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution. A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic trait, with another functional trait. In addition, it is possible that environmental stress causes epigenetic modifications of genes related to color-patterns and that their transgenerational inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait.

Highlights

  • Wing color-patterns have long been appreciated for their beauty and diversity by lepidopterists worldwide

  • A coincidence between the temperature-induced color-patterns of a given species, called the TS-type (TS for temperature shock), and the natural color-patterns of closely related species has been found in many instances (Otaki and Yamamoto, 2003, 2004a), suggesting that this phenomenon is widespread in butterflies

  • We recently discovered an intriguing field case in which phenotypic plasticity in response to environmental stress contributes to the color-pattern evolution of the pale grass blue, Zizeeria maha (Otaki et al, 2010)

Read more

Summary

Introduction

Wing color-patterns have long been appreciated for their beauty and diversity by lepidopterists worldwide. Nijhout (1991) discussed the possible important contribution of aberrant phenotypes to color-pattern evolution by citing an interesting case of the form nigrosuffusa of Junonia coenia. Nijhout (1984, 1991) examined color-pattern modifications induced by cold-shock in butterflies from a developmental physiological point of view.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.