Abstract

Signal CCD/CMOS sensors capture image information by covering the sensor surface with a color filter array(CFA). For each pixel, only one of three primary colors(red, green and blue) can pass through the color filter array(CFA). The other two missing color components are estimated by the values of the surrounding pixels. In Bayer array, the green components are half of the total pixels, but both red pixel and blue pixel components are quarter, so green components contain more information, which can be reference to color interpolation of red components and blue components. Based on this principle, in this paper, a simple and effective color interpolation algorithm based on green components and signal correlation for Bayer pattern images was proposed. The first step is to interpolate R, G and B components using the method-bilinear interpolation. The second step is to revise the results of bilinear interpolation by adding some green components on the results of bilinear interpolation. The calculation of the values to be added should consider the influence of correlation between the three channels. There are two major contributions in the paper. The first one is to demosaick G component more precisely. The second one is the spectral-spatial correlations between the three color channels is taken into consideration. At last, through MATLAB simulation experiments, experimental pictures and quantitative data for performance evaluation-Peak Signal to Noise Ratio(PSNR) were gotten. The results of simulation experiments show, compared with other color interpolation algorithms, the proposed algorithm performs well in both visual perception and PSNR measurement. And the proposed algorithm does not increase the complexity of calculation but ensures the real-time of system. Theory and experiments show the method is reasonable and has important engineering significance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.