Abstract
A zooming framework suitable for single-sensor digital cameras is introduced and analyzed in this paper. The proposed framework is capable of zooming and enlarging data acquired by single-sensor cameras that employ the Bayer pattern as a color filter array (CFA). The approach allows for operations on noise-free data at the hardware level. Complexity and cost implementation are thus greatly reduced. The proposed zooming framework employs: 1) a spectral model to preserve spectral characteristics of the enlarged CFA image and 2) an adaptive edge-sensing mechanism capable of tracking the underlying structural content of the Bayer data. The framework readably unifies numerous solutions which differ in design characteristics, computational efficiency, and performance. Simulation studies indicate that the new zooming approach produces sharp, visually pleasing outputs and it yields excellent performance, in terms of both subjective and objective image quality measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.