Abstract

In this paper, we propose an unsupervised segmentation algorithm for color images based on Gaussian mixture models (GMMs). The number of mixture components is determined automatically by adaptive mean shift, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. For the estimation of parameters of GMMs, the mean field annealing expectation-maximization (EM) is employed. The mean field annealing EM provides a global optimal solution to overcome the local maxima problem in a mixture model. By combining the adaptive mean shift and the mean field annealing EM, natural color images are segmented automatically without over-segmentation or isolated regions. The experiments show that the proposed algorithm can produce satisfactory segmentation without any a priori information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.