Abstract

Due to their rich information, color images are frequently utilized in many different industries, but the network’s security in handling their delivery of images must be taken into account. To improve the security and efficiency of color images, this paper proposed a color image encryption algorithm based on cross-spiral transformation and zone diffusion. The proposed algorithm is based on Chen’s system and the piecewise linear chaotic map, and uses the chaotic sequences generated by them for related operations. Firstly, the R, G and B planes are extracted, and the spiral starting point of each plane is randomly selected by the chaotic sequence to implement the cross-spiral transformation. Secondly, the bit-level image matrix is constructed by the scrambled image matrix, and the bit-level chaotic matrix is constructed by the chaotic sequence. Finally, the three-dimensional matrix is divided into four zones by a dividing line, and partition diffusion is carried out to obtain the encrypted image. Simulation results and algorithm analyses indicate that the proposed algorithm has superior performance and can resist a wide range of attacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call