Abstract
The color image encryption algorithm based on the chaos theory is not strong enough. In this paper, we proposed a color image chaos encryption algorithm combining Cyclic Redundancy Check (CRC) and nine palace map. Firstly, the pixel data of the plain image were moved and shuffled based on the theory of nine palace map. And the R, G and B components were extracted and converted into a binary sequence matrix that was then cyclically shifted based on the technology of generating CRC code. Finally, the encrypted image was derived from the XOR operation with random key matrix. The average entropy of encrypted image by our algorithm is 7.9993, which is slight improved compared with the coupled hyper chaotic Lorenz algorithm in previous studies. In addition, the algorithm has the advantages of large key space, high key sensitivity, anti-robust attack, and feasible encryption efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.