Abstract

Au@MnO2 nanoparticles (NPs), as core–shell nanostructures, have been widely used in ions, molecules and enzyme activities detection due to their stable properties and easy preparation, but their application in bacterial pathogens detection is rarely reported. In this work, Au@MnO2 NPs is employed for Escherichia coli (E. coli) detection through monitoring and measuring β-galactosidase (β-gal) activity based enzyme-induced color-code single particle enumeration (SPE) method. In the existence of E. coli, p-aminophenylβ-D-galactopyranoside (PAPG) can be hydrolyzed to generate p-aminophenol (AP) by the endogenous β-gal of E. coli. MnO2 shell reacts with AP and produces Mn2+, causing the blue shift of the localized surface plasmon resonance (LSPR) peak and color change of the probe from bright yellow to green. With the SPE method, the amount of E. coli can be quantified readily. The detection limit reaches 15 CFU/mL with dynamic range from 100 to 2900 CFU/mL. Besides, this assay is effectively employed to monitor E. coli in river water sample. The designed sensing strategy provides an ultrasensitive and low cost way for E. coli detection and has the possibility to detect other bacteria in environmental monitoring and food quality analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call