Abstract

AbstractFor an edge‐colored graph, its minimum color degree is defined as the minimum number of colors appearing on the edges incident to a vertex and its maximum monochromatic degree is defined as the maximum number of edges incident to a vertex with a same color. A cycle is called properly colored if every two of its adjacent edges have distinct colors. In this article, we first give a minimum color degree condition for the existence of properly colored cycles, then obtain the minimum color degree condition for an edge‐colored complete graph to contain properly colored triangles. Afterwards, we characterize the structure of an edge‐colored complete bipartite graph without containing properly colored cycles of length 4 and give the minimum color degree and maximum monochromatic degree conditions for an edge‐colored complete bipartite graph to contain properly colored cycles of length 4, and those passing through a given vertex or edge, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.