Abstract
For a visual system to possess color constancy across varying illumination, chromatic signals from a scene must remain constant at some neural stage. We found that photoreceptor and opponent-color signals from a large sample of natural and man-made objects under one kind of natural daylight were almost perfectly correlated with the signals from those objects under every other spectrally different phase of daylight. Consequently, in scenes consisting of many objects, the effect of illumination changes on specific color mechanisms can be simulated by shifting all chromaticities by an additive or multiplicative constant along a theoretical axis. When the effect of the illuminant change was restricted to specific color mechanisms, thresholds for detecting a change in the colors in a scene were significantly elevated in the presence of spatial variations along the same chromatic axis as the simulated chromaticity shift. In a variegated scene, correlations between spatially local chromatic signals across illuminants, and the desensitization caused by eye movements across spatial variations, help the visual system to attenuate the perceptual effects that are due to changes in illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.