Abstract

An image segmentation system is proposed for the segmentation of color image based on neural networks. In order to measure the color difference properly, image colors are represented in a modified L*u* v* color space. The segmentation system comprises unsupervised segmentation and supervised segmentation. The unsupervised segmentation is achieved by a two-level approach, i.e., color reduction and color clustering. In color reduction, image colors are projected into a small set of prototypes using self-organizing map (SOM) learning. In color clustering, simulated annealing (SA) seeks the optimal clusters from SOM prototypes. This two-level approach takes the advantages of SOM and SA, which can achieve the near-optimal segmentation with a low computational cost. The supervised segmentation involves color learning and pixel classification. In color learning, color prototype is defined to represent a spherical region in color space. A procedure of hierarchical prototype learning (HPL) is used to generate the different sizes of color prototypes from the sample of object colors. These color prototypes provide a good estimate for object colors. The image pixels are classified by the matching of color prototypes. The experimental results show that the system has the desired ability for the segmentation of color image in a variety of vision tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.