Abstract

Lithium fluoride crystals are irradiated at various doses by gamma rays at 77K. The time evolution of photoluminescence signals from aggregated F2+, F2, F3+ and F3 color centers, and of the absorption intensity of primary F centers are measured at various annealing temperatures. The lifetimes of anionic vacancies υa and F2+ centers, the characteristic times of concentration growth of F2, F3+ and F3 centers, and also the activation energies of diffusion of vacancies and F2+ centers together with various processes of aggregation are determined. It is found that lifetime decreases for vacancies while increases for F2+ centers by increasing the irradiation dose. It is also shown that, after irradiation during annealing, vacancies are formed as a result of the reaction F2++H→υa+Fl−, where Fl− is a fluorine ion in a lattice site and H is a fluorine interstitial atom. Then these vacancies participate in color centers aggregation kinetics. The presence of F− centers in the irradiated crystal is established, and the processes which lead to the formation of F2, F3+ and F3 centers after irradiation, are unveiled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.