Abstract
Background There is considerable ongoing effort towards making DNA sequencing machines faster and more affordable today. Improving the accuracy of next-generation sequencers directly lowers sequencing costs by reducing the need for resequencing, making genome-based diagnostics and research more affordable [1]. In this paper, we show how the accuracy of next-generation sequencing machines is significantly improved using supervised learning, specifically, multi-class support vector machines. We demonstrate our methods on the SOLiD 5500/5500 XL platform. Base-calling is the process of determining the order of nucleotides in the read sequence. In SOLiD, base-calling involves the process of color calling, since the SOLiD platform uses an encoding system where each adjacent pair of nucleotides is represented by one of four colored dyes [2]. Base-callers have been developed for other nextgeneration sequencing platforms, in particular Illumina and Roche 454 [1]. Most of them are based on explicit statistical models and some are based on support vector based supervised learning [3,4]. But ours is the first supervised learning method applied on a large scale directly to color space. Also, this is the first supervised learning method to be applied on a large-scale to SOLiD. Moreover, we show that our methods require less training data and hence our training times are much faster than previous methods.
Highlights
There is considerable ongoing effort towards making DNA sequencing machines faster and more affordable today
We show that our methods require less training data and our training times are much faster than previous methods
* Correspondence: shruthi@ices.utexas.edu 1Department of Computer Science, University of Texas, Austin, Texas, USA Full list of author information is available at the end of the article signal, a problem known as phasing
Summary
There is considerable ongoing effort towards making DNA sequencing machines faster and more affordable today. Base-calling is the process of determining the order of nucleotides in the read sequence. In SOLiD, base-calling involves the process of color calling, since the SOLiD platform uses an encoding system where each adjacent pair of nucleotides is represented by one of four colored dyes [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.