Abstract

In the last few years, there has been a lot of interest in making smart components, e.g. robots, able to simulate human capacity of object recognition and categorization. In this paper, we propose a new revolutionary approach for object categorization based on combining the HOG (Histograms of Oriented Gradients) descriptors with our two new descriptors, HOH (Histograms of Oriented Hue) and HOS (Histograms of Oriented Saturation), designed it in the HSL (Hue, Saturation and Luminance) color space and inspired by this famous HOG descriptor. By using the chrominance components, we have succeeded in making the proposed descriptor invariant to all lighting conditions changes. Moreover, the use of this oriented gradient makes our descriptor invariant to geometric condition changes including geometric and photometric transformation. Finally, the combination of color and gradient information increase the recognition rate of this descriptor and give it an exceptional performance compared to existing methods in the recognition of colored handmade objects with uniform background (98.92% for Columbia Object Image Library and 99.16% for the Amsterdam Library of Object Images). For the classification task, we propose the use of two strong and very used classifiers, SVM (Support Vector Machine) and KNN (k-nearest neighbors) classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.