Abstract

PurposeLongitudinal chromatic aberration can provide luminance and chromatic signals for emmetropization. A previous experiment examined the role of temporal sensitivity to luminance flicker in the emmetropization response. In the current experiment, we investigate the role of temporal sensitivity to color flicker.MethodsFive-day-old chicks were exposed to sinusoidal color modulation of blue/yellow (N = 73) or red/green LEDs (N = 84) at 80% contrast for 3 days. The modulation frequencies used were as follows: 0, 0.2, 1, 2, 5, and 10 Hz. There were 5 to 16 chicks per condition. Mean illumination was 680 lux. Changes in ocular components were measured using Lenstar, and refraction was measured with a Hartinger refractometer.ResultsEyes grew less when exposed to high temporal frequencies and more at low temporal frequencies. With blue/yellow modulation, the temporal variation was small; eyes grew 268 ± 15 μm at 0 Hz and 224 ± 12 μm at 10 Hz, representing a 16.4% growth reduction. With red/green modulation, eyes grew 336 ± 31 μm at 0 Hz and 218 ± 20 μm at 10 Hz, representing a 35% growth reduction. Choroidal and anterior chamber changes compensated for eye growth, reducing refractive effects; blue/yellow refraction changes ranged from −0.63 to 1.04 diopters.ConclusionsAt high temporal frequencies, color is not a factor, but at low temporal frequencies, red/green modulation produced maximal growth. The pattern of changes observed in each ocular component with changes in the temporal frequency and/or the color of the stimulus was consistent with the idea that the natural sunlight spectrum may be optimal for emmetropization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call