Abstract

Social insects build sophisticated and complex architectures such as huge nests and underground galleries based on self-organizing rules. The structures of these architectures vary widely in size and shape within a species. Some studies have revealed that the current environmental and/or social factors can cause differences in the architectures that emerge from collective building. However, little is known about the effect of colony-level variations on the architecture. Here, we demonstrate that termite colonies build colony-specific architecture using shelter-tube construction as a model system. When we divided a colony into multiple groups of individuals, groups drawn from the same colony performed similar patterns of construction, whereas groups from different colonies exhibited different patterns. The colony variations in shelter-tube construction are generally thought to reflect differences in foraging strategy, and this difference can have important fitness consequences depending on the distribution of wood resources in the environment. This is the first demonstration of colony variation in the architecture that emerges from collective behavior. Colony-specific architectural variations provide new insights into our understanding of the self-organization systems, which were previously assumed to provide each species with a species-specific construction mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.