Abstract

In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

Highlights

  • Coral reefs are biogenic and highly-diverse ecosystems with high topographic relief and structural complexity (Allemand et al, 2011; Graham & Nash, 2012)

  • How to cite this article Agudo-Adriani et al (2016), Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage

  • Our results indicate that geometrical and biological characteristics of Acropora cervicornis may have a striking effect on the associated fish assemblage

Read more

Summary

Introduction

Coral reefs are biogenic and highly-diverse ecosystems with high topographic relief and structural complexity (Allemand et al, 2011; Graham & Nash, 2012). These organisms provide habitats for a myriad of associated species including non-sessile invertebrates (Stella, Jones & Pratchett, 2010; Stella et al, 2011; Graham & Nash, 2012) and fish (Risk, 1971; Luckhurst & Luckhurst, 1978; Roberts & Ormond, 1987; Graham & Nash, 2012). Several studies have indicated that the high biodiversity of coral reefs is strongly related to their structural complexity; for more heterogeneous habitats may increase food availability, provide shelter and, as a result, increase the number of available niches; thereby regulating ecological interactions among coral reef organisms (Birkeland & Neudecker, 1981; Moberg & Folke, 1999; López-Ordaz & Rodríguez-Quintal, 2010; Graham & Nash, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.