Abstract

Establishment of new groups is an important step in the life history of a social species. Fissioning is a common mode not only in group proliferation, for instance, as a regular part of the life cycle in the honey bee, but also when multiple females reproduce in the same group, as in multiple-queen ant societies. We studied the genetic consequences of fissioning in the ant Proformica longiseta, based on DNA microsatellites. In P. longiseta, new nests arise by fissioning from the old ones when they grow large, and the daughter nests consist of workers and queens or queen pupae but never both. Our results show that fissioning is not entirely random with respect to kinship. Workers tend to segregate along kin lines, but only when the initial relatedness in the parental nests is low. Workers in a daughter nest also tend to be associated with closely related adult queens, whereas such an association is not detected between workers and queen pupae. Most queens and workers are carried to the daughter nest by a specialized group of transporting workers, suggesting active kin discrimination by them. Fissioning pattern in P. longiseta is different from that found in other social insects with regular fission (e.g., the honey bee, swarm-founding wasps), where no fissioning along kin lines has been found. It does, however, resemble fissioning in another group of social animals: primates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.